Numéro 546-4

L'exercice peut se traiter grâce à un peu de calcul barycentrique, l'emploi du théorème de Thales et l'observation du fait que aire(ABC) = aire (IJK) + aire(AIB) + aire(BJC) + aire(AKC).

I est sur [AM] et est différent de A et de M donc il existe des réels non nuls a et m tels que I soit le barycentre de $\{(A; a); (M; m)\}$. On a donc a $\overrightarrow{IA} + \overrightarrow{m} \cdot \overrightarrow{IM} = \overrightarrow{0}$.

D'autre part M est le le barycentre de $\{(B;2); (C;1)\}$ donc $2\overline{IB}+\overline{IC}=3\overline{IM}$ donc $2\overline{m}\overline{IB}+\overline{m}\overline{IC}=3\overline{m}\overline{IM}$ et enfin, puisque $-3\overline{m}\overline{IM}=3\overline{a}\overline{IA}$, $3\overline{a}\overline{IA}+2\overline{m}\overline{IM}+\overline{m}\overline{IC}=\overline{0}$.

Donc \hat{I} est \hat{I} e le barycentre de $\{(A; 3a); (B; 2m); (C; m)\}$.

Par la même méthode on montre qu'il existe des réels non nuls b et n tels que I soit le le barycentre de $\{(A; n); (B; 3b); (C; 2n)\}.$

les coefficients barycentriques dans les deux écritures obtenues étant proportionnels, on a :

$$\frac{3a}{n} = \frac{2m}{3b} = \frac{m}{2n}$$
 donc $m = 6a$ et $n = \frac{3}{4}b$. On peut prendre $a = 1$.

I est donc le barycentre de $\{(A;1);(M;6)\}$ (et celui de $\{(B;4);(N;3)\}$).

Donc $\overrightarrow{AI} = \frac{6}{7} \overrightarrow{AM}$.

Puisque $AI = \frac{6}{7}AM$, on obtient en utilisant le théorème de Thalès que les deux triangles AIB et AMB ont leurs hauteurs respectives h et h' relatives à leur base commune [AB] qui vérifient $h = \frac{6}{7}h'$ et donc que $aire(AIB) = \frac{6}{7} \times aire(AMB)$.

Par le même raisonnement et compte tenu du fait que $MB = \frac{1}{3}CB$, on a aire(AMB)= $\frac{1}{3}$ ×aire (ABC). Des deux résultats précédents on déduit aire(AIB)= $\frac{2}{7}$ ×aire (ABC).

On a de manière analogue les relations : $aire(AKC) = \frac{2}{7} \times aire(ABC)$ et $aire(BJC) = \frac{2}{7} \times aire(ABC)$.

Donc aire(AIB) + aire(BJC) + aire(AKC) = $\frac{6}{7} \times aire(ABC)$. Et donc aire(IJK) = $\frac{1}{7} \times aire(ABC)$

