Rubrique : Fils rouges

Discerner représentations et concepts

La recherche Loglang (logique et langage) du Centre de Recherche sur l’Enseignement des Mathématiques (CREM) vise à attirer l’attention des enseignants de tous niveaux sur les difficultés des élèves lors de leur confrontation à la langue mathématique. Elle nourrit l’ambition de produire des outils de réflexion pédagogique permettant de mieux cerner ces difficultés et d’y remédier. Le présent article est le fruit d’une réflexion entretenue par l’équipe du CREM, et s’inscrit dans cette perspective de sensibilisation.

Samuël Di Emidio

© APMEP Juin 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Discerner représentations et concepts


Formulations et reformulations,
un travail collectif en mathématiques

Le groupe Léo (Langage, écrit, oral) de l’IREM de Paris se questionne à propos du langage dans l’enseignement des mathématiques. Il cherche à enrichir la réflexion et les pratiques des collègues à ce sujet. Il partage ici plusieurs expérimentations à propos de la formulation et de la reformulation en mathématiques avec les élèves.

Groupe Léo de l’IREM de Paris

© APMEP Juin 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Formulations et reformulations


\(\mathsf{3}\) est-il inférieur ou égal à \(\mathsf{4}\) ?

En cours de mathématiques, lorsque l’on demande à des élèves, quel que soit leur niveau d’enseignement, ce qu’ils pensent de l’affirmation \(\mathsf{3}\leqslant \mathsf{4}\), beaucoup répondent que c’est faux… C’est à partir de ce constat troublant que Georges Mounier nous interpelle.

Georges Mounier

© APMEP Juin 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de 3 est-il inférieur ou égal à 4 ?


La troisième langue

On ne présente plus Stella Baruk. On retrouve, dans cet article original, ses talents d’analyse du langage (ou plutôt des langages) pour déceler dans certaines erreurs de nos élèves des explications de malentendus qui ont la vie dure, et parfois de lourdes conséquences. Naviguons avec elle entre mathématiques et poésie, à la découverte de cette troisième langue bien cachée dans nos classes.

Stella Baruk

© APMEP Juin 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de La troisième langue


Résolution de problèmes et apprentissage de la langue
à l’école élémentaire

Comprendre un énoncé de problème en mathématiques n’est pas toujours simple pour des élèves, mais c’est déterminant pour la réussite… Serge Petit et Annie Camenisch nous proposent ici quelques pistes pour travailler sur la langue en mathématiques en cycle 2.

Annie Camenisch et Serge Petit

© APMEP Juin 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Résolution de problèmes et apprentissage de la langue à l’école élémentaire


Nom d’un nombre !

La langue française semble présenter beaucoup d’anomalies dans la dénomination des nombres : pourquoi treize, quatorze, quinze puis dix-sept, dix-huit ? Pourquoi cinquante, soixante, puis soixante-dix, quatre-vingts ? Nous allons essayer d’étudier l’origine de ces dénominations et de voir si ces anomalies (ou d’autres) se produisent également dans d’autres langues ; nous limiterons notre étude aux langues parlées dans une zone assez proche de notre pays.

Jacques Verdier

© APMEP Juin 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Nom d’un nombre !


Conter et compter

Nicolas Villemain, professeur de mathématiques, nous fait part de son expérience autour des narrations de recherche en classe de 6e en co-animation avec une de ses collègues, Annabelle Presa, professeure de lettres modernes et de FLE (Français Langue Étrangère).

Nicolas Villemain

Continuer la lecture de Conter et compter


Comprendre le langage mathématique

Le saviez-vous ? Le laboratoire de recherche brésilien MateGramàtìca s’est spécialisé dans l’étude du langage mathématique et en a extrait plusieurs dialectes, dont il identifie et formalise les règles de grammaire. Vous n’êtes pas au bout de vos surprises…

Sueli Cunha

© APMEP Juin 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Comprendre le langage mathématique


Dictée en cours de mathématiques ?

« Toutes les disciplines concourent à la maîtrise de la langue et, réciproquement, la maîtrise de la langue est partie intégrante de l’apprentissage des disciplines »1. Le groupe Léo (Langage, écrit, oral) de l’IREM de Paris cherche à enrichir la réflexion et les pratiques des collègues de mathématiques notamment à ce sujet. Il nous propose ici d’adapter en cours de mathématiques une activité traditionnelle du cours de français : « la phrase du jour ».

Groupe Léo de l’IREM de Paris

© APMEP Juin 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Dictée en cours de mathématiques ?


Mathématiques à/en portée

Le langage mathématique et le langage musical ont ceci de particulier que les mots, les signes, les symboles n’y désignent pas seulement des objets : ils les incarnent [6]. Mieux : mathématiques et musique se parlent et se comprennent, au point que leur dialogue fut souvent fructueux : l’étude méthodique du monocorde, attribuée à Pythagore; la pratique, en amateur, de la guitare par Zorn ; l’usage des probabilités par Xenakis ; l’emploi des transformations géométriques par Bach en sont autant d’exemples. Et si les deux disciplines ont leur grammaire, axiomes et théorèmes dans un cas, solfège et harmonie dans l’autre, elles demandent à l’esprit de se libérer de la technique (donc de la posséder) pour être créatif, et ne se renouvellent que parce qu’elles savent perpétuellement réinventer et dépasser leurs règles [10][3]. En voici un aperçu, à la portée du collégien.

Karim Zayana

© APMEP Juin 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Mathématiques à/en portée