Fils rouges

La troisième langue

On ne présente plus Stella Baruk. On retrouve, dans cet article original, ses talents d’analyse du langage (ou plutôt des langages) pour déceler dans certaines erreurs de nos élèves des explications de malentendus qui ont la vie dure, et parfois de lourdes conséquences. Naviguons avec elle entre mathématiques et poésie, à la découverte de cette troisième langue bien cachée dans nos classes.

Stella Baruk

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de La troisième langue

Cet article est réservé aux adhérents.
Si vous êtes adhérent, il faut vous connecter sur cette page puis recharger cette page.


Résolution de problèmes et apprentissage de la langue à l’école élémentaire

Comprendre un énoncé de problème en mathématiques n’est pas toujours simple pour des élèves, mais c’est déterminant pour la réussite… Serge Petit et Annie Camenisch nous proposent ici quelques pistes pour travailler sur la langue en mathématiques en cycle 2.

Annie Camenisch et Serge Petit

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Résolution de problèmes et apprentissage de la langue à l’école élémentaire

Cet article est réservé aux adhérents.
Si vous êtes adhérent, il faut vous connecter sur cette page puis recharger cette page.


Nom d’un nombre !

La langue française semble présenter beaucoup d’anomalies dans la dénomination des nombres : pourquoi treize, quatorze, quinze puis dix-sept, dix-huit ? Pourquoi cinquante, soixante, puis soixante-dix, quatre-vingts ? Nous allons essayer d’étudier l’origine de ces dénominations et de voir si ces anomalies (ou d’autres) se produisent également dans d’autres langues ; nous limiterons notre étude aux langues parlées dans une zone assez proche de notre pays.

Jacques Verdier

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Nom d’un nombre !

Cet article est réservé aux adhérents.
Si vous êtes adhérent, il faut vous connecter sur cette page puis recharger cette page.


Conter
et compter

Nicolas Villemain, professeur de mathématiques, nous fait part de son expérience autour des narrations de recherche en classe de 6ème en co-animation avec une de ses collègues, Annabelle Presa, professeure de lettres modernes et de FLE (Français Langue Étrangère).

Nicolas Villemain

Continuer la lecture de Conter et compter

Cet article est réservé aux adhérents.
Si vous êtes adhérent, il faut vous connecter sur cette page puis recharger cette page.


Comprendre le langage mathématique

Le saviez-vous ? Le laboratoire de recherche brésilien MateGramàtìca s’est spécialisé dans l’étude du langage mathématique et en a extrait plusieurs dialectes, dont il identifie et formalise les règles de grammaire. Vous n’êtes pas au bout de vos surprises…

Sueli Cunha

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Comprendre le langage mathématique

Cet article est réservé aux adhérents.
Si vous êtes adhérent, il faut vous connecter sur cette page puis recharger cette page.


Dictée en cours de mathématiques ?

« Toutes les disciplines concourent à la maîtrise de la langue et, réciproquement, la maîtrise de la langue est partie intégrante de l’apprentissage des disciplines »1. Le groupe Léo (Langage, écrit, oral) de l’IREM de Paris cherche à enrichir la réflexion et les pratiques des collègues de mathématiques notamment à ce sujet. Il nous propose ici d’adapter en cours de mathématiques une activité traditionnelle du cours de français : « la phrase du jour ».

Groupe Léo de l’IREM de Paris

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Dictée en cours de mathématiques ?

Cet article est réservé aux adhérents.
Si vous êtes adhérent, il faut vous connecter sur cette page puis recharger cette page.


Mathématiques à/en portée

Le langage mathématique et le langage musical ont ceci de particulier que les mots, les signes, les symboles n’y désignent pas seulement des objets : ils les incarnent[6]. Mieux : mathématiques et musique se parlent et se comprennent, au point que leur dialogue fut souvent fructueux : l’étude méthodique du monocorde, attribuée à Pythagore; la pratique, en amateur, de la guitare par Zorn ; l’usage des probabilités par Xenakis ; l’emploi des transformations géométriques par Bach en sont autant d’exemples. Et si les deux disciplines ont leur grammaire, axiomes et théorèmes dans un cas, solfège et harmonie dans l’autre, elles demandent à l’esprit de se libérer de la technique (donc de la posséder) pour être créatif, et ne se renouvellent que parce qu’elles savent perpétuellement réinventer et dépasser leurs règles[10][3]. En voici un aperçu, à la portée du collégien.

Karim Zayana

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Mathématiques à/en portée

Cet article est réservé aux adhérents.
Si vous êtes adhérent, il faut vous connecter sur cette page puis recharger cette page.


Autour de la multiplication des flottants

François Boucher nous explique pourquoi le langage Python se met en faute sur des calculs aussi élémentaires que \(3 \times 0,1\) (qu’il affiche différent de \(0,3\)). Pour comprendre ce phénomène, il faut consentir à pénétrer dans les tréfonds de la machine. Au bout de ce voyage, les mathématiques sortent encore une fois victorieuses : ça s’explique. . .

François Boucher

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Autour de la multiplication des flottants

Cet article est réservé aux adhérents.
Si vous êtes adhérent, il faut vous connecter sur cette page puis recharger cette page.


Techniques multiplicatives

Tous les types de numération, qu’ils soient additifs ou de position, permettent de réaliser assez facilement des additions et des soustractions. Il n’en va pas de même pour la multiplication et la division. Anne Boyé nous présente ici quelques méthodes de multiplication utilisées à travers les âges et les cultures.

Anne Boyé

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Techniques multiplicatives

Cet article est réservé aux adhérents.
Si vous êtes adhérent, il faut vous connecter sur cette page puis recharger cette page.